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TWO-COMPONENT BENARD CONVECTION IN CYLINDERS
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Abstract—A nonreactive binary (gas or liquid) mixture in a vertical cylinder heated from below is considered.
Sufficient conditions are given for steady thermoconvective instability. Both axi- and asymmetric modes of
convection are considered. The theoretical predictions are compared with the available experimental data.

NOMENCLATURE

D, mass diffusivity ;

D", Onsager’s Dufour cross-coefficient ;

€, €, €,, unit vectors;

i aspect ratio, R/L;

h, aspect ratio, L/2R(= 1/2f);

I, nth order of modified Bessel function;

g nth order of Bessel function;

k, solution of equation (2.7);

L, height of cylinder;

n, outward unit normal vector;

N, mass fraction of component one;

p, dimensionless pressure field;

P, Prandtl number, v/x;

P, coefficient in pressure field
representation ;

r, dimensionless radial coordinate;

" Lewis number, D/x;

S, Soret number, yAN ,/(¢AT);

t, dimensionless time;

T, dimensionless perturbation in tempera-
ture field;

AT, thermal gradient;

u, velocity field;

u, radial component of dimensionless
velocity;

U, coefficient in radial component of velocity
field representation ;

v, azimuthal component of dimensionless
velocity ;

w, vertical component of dimensionless
velocity ;

w, coefficient in radial component of velocity
field representation;

z, dimensional vertical coordinate.

Greek symbols

a, thermal coefficient of expansion;

7, volume expansion due to variation of the
mass fraction N, ;

r, dimensionless perturbation in concen-
tration field;

I, coefficient in  concentration field
representation ;

* To whom all correspondence should be addressed.

d,,0,, see equations (2.15) and (2.16);
K, thermal diffusivity ;
Uy, chemical potential of component one;
v, kinematic viscosity ;
Q, defined T — T;
o, density ;
v, defined S(1 + Dg)/r (1 + S)(1 — Dg/rp);
¢, azimuthal coordinate.
Superscripts
m, average;
C, critical.

INTRODUCTION

THE rROLE of Onsager cross-transport phenomena in
the stability of fluid layers heated from below or above
has been the subject of intense research in the past
decade. Recently, interest has focused on the impor-
tance of heat and mass cross-transport processes in
cylindrical containers [1, 2]. In the present paper we
develop a general, albeit linear, stability analysis of the
influence of Soret and Dufour effects upon the stability
of the motionless steady state with no restriction on the
preferred pattern for convective instability. We discuss
the role played by the aspect-ratio of the container and
delineate the threshold for axi- and asymmetric con-
vective rolls. The present paper also extends earlier
work on binary gas mixtures in infinitely extended
horizontal layers [3].

1. LINEAR STABILITY ANALYSIS

We consider a motionless binary fluid mixture in a
vertical cylindrical container of height L and diameter
2R (Fig. 1). When the initially homogeneous layer is
heated from below the Soret effect distributes the
components in accordance with the value given to the
thermal gradient (AT/L, where T denotes tempera-
ture) until the mass and heat fluxes balance each other
[4]. On the other hand, past a certain threshold the
thermal gradient induces enough buoyancy to de-
stabilize the linearly distributed state of rest thus
leading to natural convection [5].

For convenience in the description we choose the
following scales : unit length R ; unit time R?/x, where k
is the thermal diffusivity (thermometric conductivity)
of the mixture; velocity xL/R?; temperature AT;
concentration (mass fraction) AN, ; pressure p™gL,
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FiG. 1. A sketch of the container. Note that in the main text
we have used two different aspect-ratios: h = L/2R and f =
R/L. 2R and L denote diameter and height, respectively. e
denotes a unit vector along a given direction as subscript.

where p™ and g denote a reference density and the
gravitational acceleration, respectively. We also in-
troduce the following dimensionless groups: aspect-
ratio h = L/2R; Rayleigh number Ra =
agATR*/(vkL), where « is the thermal expansion
coefficient and v is the kinematic viscosity; Prandtl
number P = v/k; (inverse) Lewis number r, = D/k,
where D denotes the mass diffusivity ; Soret separation
or buoyancy factor S = —yAN /(«AT), where y is the
density variation induced by a change AN, in the
mass-fraction of, for example, component one ; Dufour
number Dp = + TN;D"AN(0p,/0N,), 1/kc, AT,
where D” is Onsager’s Dufour cross-coefficient [4]; u,
is the chemical potential of component one that we
take as the denser in the mixture. We also take S
positive when the denser component migrates to the
colder boundary. The superscript m denotes some
reference value given to the relevant quantity, say, the
value at the bottom surface; c, is the specific heat at
constant pressure.

With the above introduced scales and definitions the
thermohydrodynamic evolution of disturbances upon
the motionless state of the fluid layer is given by the
following set of partial differential equations [3, 6, 7]:

divu=20 (1.1)
P~ 3u/dt = Ragrad p/aRAT + V*u
+ [Ra(1 + S)T + SRaQJe, (1.2)
0T/ot = (1 + Dg)V3T + DeV2Q +w  (1.3)
0Q/0t = (rp — Dg)VQ — (1 + DVAT  (1.4)

where u = (u, v, w) accounts for the 3-dim. velocity
field; ¢t denotes dimensionless time; Q = T — I (for
convenience we introduce a dimensionless difference
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between the temperature and mass-fraction fields) and
e, =(0,0 + 1)

We restrict consideration to the following accepted
realistic boundary conditions (b.c.): rigid walls that are
impervious to matter transfer and good heat con-
ductors. Wehaveu = 0,T = 0andVQ 'n =0atZ =
+h and R = 1, where n denotes the outward unit
normal vector to the horizontal or vertical boundaries
of the cylinder.

2. FORMAL SOLUTION OF THE STABILITY PROBLEM:
ARBITRARY MODES OF CONVECTION
The system of equations (1.1)—(1.4) has been solved
using the Galerkin method [7, 8]. With unow denoting
the velocity field in cylindrical coordinates (Fig. 1),u =
(U, uy, u,), we set

u, = z(h? — z%)u(r) cos no, 2.1
u,= z(h* — z*y(r) sin ng, 2.2)
u, = %(h2 — z2)? w(r) cos ne. 2.3)

Note that we have assumed periodicity along the ¢
coordinate and that the radial parts satisfy the con-
tinuity equation. We have

u(r) = — [Jylkr) = J (" Yk (k),  (2.4)
o(r) = [Julkr)fr — J (" In/k2J k), (2.5)
wir)y= J,tkr)/J (k) — 1" (2.6)
where k obeys the relation
kJy(k)y = (n + 1)J (k) (2.7

and the primed symbols denote derivatives with re-
spect to the argument.

Thus, according to the value given to n we have
axisymmetric rolls (n = 0), asymmetric rolls (n = 1)
and higher order modes (n > 2).

As the chosen trial functions for the velocity field are
an exact solution of the continuity equation we use
them to generate trial functions for the fields T and Q
[8]- We have

T = 8,(r) (h? — 22)(5h* — z2%)cosn¢, (2.8)
Q = 0,(r) cos ne cos (29,) (2.9)
where
0,(r) = [11/24883(k> + S2)][637,kr)/J (k)
+ K23, (8,) — (K2 + 82)"], (2.10)
0,(r) = AJ (kr)/J (k) + BI(6,r) + Cr" (2.11)
with
A = 12r%/2*(k? + 82), (2.12)
B = [1/5,1,(8,)][12k*/n*53(k* + 83)]
x [n(k? + 83) — k&3 Jo(k)/J k)], (2.13)
C = — 12h%/7%82, (2.14)
82 = 153/62h* (2.15)
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and
&, = n/h. (2.16)

The functions J, and I, refer to the Bessel and modified
Bessel functions [10].

Then the critical Rayleigh number for the onset of
(steady) convection is given by the following equation

Ra® = — <u-V2u)/[{w TH(1 — Dg/rp)l + S)/

(1 + Dg) + (W) Sirp] (217)
where the bracket denotes the following scalar product

{fg> = [fgdv (2.18)

with fand g two arbitrary solutions of the problem and
the integration goes over the whole cylinder (volume,
V).

A general expression for Ra® can be given for an
arbitrary value of n. However, we shall discuss here
results for the n = 0 (axisymmetric} and n = 1
(asymmetric) modes.

We have

n=20

(u-Viuy = — (B/630)[189 + 24h2k? + 4h*k*]
(2.19)

wT) = [121h°k?/1953082(k* + 8%)*][6%
+ 63 k? + 4k? — 8K21,(8,)/8,10(8,)] (2.20)
<wQy = [18h°k?/n853(k? + 83)] [6% + k262
— Ak? + 2Kk28,14(8,)/1,(8,)]. (2.21)
n=1
u-Vau) = — (dh3/2835k4)[ 24k k* + k2 — 20)
+ 3h2(4kS — k* — 112k2 + 64)
+ 21(4k* + k? — 104)],
{wT) = (121h°/87885)[k28%(k* + 62)*]
x [72kS + 2842 (k* — 2k2 — 44)
+ 382k — Kk — 64) — 366,k814(8,)/1,(5,)
+ 9k%57], (2.23)
wQ) = [4h*/n(k? + 63)763] {05(2k* — k* — 64)
+ 5%k2(2k* — 4k?* — 88) — 3k*83(k* + 8)
+ 4k2(3k* + 262 + 83k?)
+ [(k?8] + 6k> + 28°),(5,) — 3k21,(5,)]
x [8,16(82) — 1,(8,)] 1} (2.24)

2.22)

3. DISCUSSION OF RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA
The critical Rayleigh number for the onset of
convective instability, Ra®, is a rather involved function
of the parameters of the problem, S, Dg, rp and h. For
illustration we give some of the results found. Figure 2
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FiG. 2. Critical Rayleigh number for axi- and asymmetric

modes of convection (n = 0 and n = |, respectively} as a

function of aspect-ratio, h, and given values of Soret and

Lewis numbers (S = 10747, = 107 2). Note the cross-over of

the two modes at h = h* = (.74. Different values of Sand r,
do not alter the qualitative picture.

provides the critical Rayleigh number as a function of
the aspect-ratio. It appears that at a certain value of ,
called h*, around 0.7, there is a cross-over between the
axi- and asymmetric modes of convection as already
happens with single-component liquid layers [8]. Past
h* the taller the cylinder the greater is the tendency
towards asymmetric cells.

Figure 3 illustrates the rather minor role played by
the Dufour effect as already noted in the stability
analysis of infinitely extended horizontal layers [3].

Figures 4 and 5 provide a comparison between
theory and experiment. This corresponds to the mix-
tures Xe : He and Xe : Ar, respectively. For the sake of
completeness we report the values of the first-order
Galerkin calculation using two normalization factors,
one corresponds to a mere displacement of the curve to
fit the experimental data at vanishing molar fraction of
Xe and the other to a weighted correction factor of 200
(the experimental value) over 247.25 (our theoretical
result). The former fit provides quite a satisfactory
description of the experimentally available data [2].

Figure 6 also compares theory with experiment
using the parameter ¥ = S(1 + Dp)/rp(1 + 8)
{1 — Dg/rp), introduced in ref. [11]. The peaks shown
in this curve follow the variation of ¥ with the mass-
fraction of Xe as reported in ref. [2] thus illustrating a
difficulty with the use of such an involved combination
of parameters. There are no peaks in a plot of critical
Rayleigh numbers vs Soret separation, S. Moreover,
the curve for infinitely extended layers lies well below
the corresponding curve for a bounded cylinder which
indicates the expected stabilizing effect of the lateral
boundaries [§].
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FI1G. 3. An illustration of the role of Dufour effect on the stability analysis. Note that at vanishing Soret
coefficient all curves must cross the vertical axis at the critical Rayleigh number for the onset of convection in
single-component layers. Different values of the aspect-ratio (here h = 0.5) do not alter the qualitative
picture. Solid and broken lines respectively correspond to vanishing and non-vanishing Dufour coefficient.

4. ALTERNATIVE DESCRIPTION OF THE PROBLEM:
THE CASE OF AXYSYMMETRIC CONVECTION

When restriction to axisymmetric modes of con-
vection is made a more suitable set of scales is the
following: vertical length L; horizontal length R;
pressure p™vkRa'”; velocity xRa'?/L where now the
Rayleigh number is Ra = agL3AT/xv and the aspect
ratio f = R/L. All other scales are the same as defined
earlier in section 2. Then the thermohydrodynamic
evolution of disturhances upon the initially motionless
steady state is g?»}/erned by the following set of
equations:

S ou/or + (f Y tu + e, d(u - e,)/0z = 0, (4.1)

P2
00

100~

T T T T T T T T T
0.2 04 06 0.8 1

Mole Fraction Xenon

Fic. 4. Comparison between theory and experimental data
for the Xe:He mixture « infinitely extended horizontal
layer (results from refs. {3] and [11] as reported in ref. [2].
The latter authors in fact plot the quantity (200/1707) (RaS/
rp ¥): - -- infinitely extended horizontal layer (results fron
ref. [3] and [11] when the critical Rayleigh number Ra® is
used); —— this work (first-order Galerkin calculation)
normalized with the factor 200/247.25 (experimental vs
theoretical values at vanishing Xe mole fraction); ... this
work (first-order Galerkin calculation) corrected with the
systematic deviation between theory and experiment at
vanishing Xe mole fraction ; 2\, experimental data as reported
in ref. [2].

f o apter — 2 [ (1/notru)]/or — Pujoz?

+ P au/ot =0, (42)
op/oz — Ra'? T — (rf?)~* [r &(u - e,)/0r]/ér
— 0*(u-e,)/0z* — SRa'2T + P~ ' d(n-e,)/0r
=0, (4.3)
(rf?)" ' (rdTjor)or + 8*T/82* + Ra'P(u -e,)
+ De[{rf )" ' @(roT/or)/ér + 87T /0z%]
- 8T/et =0 (44)
(rp/rf?) &(r 2T /0r)for + rpd®T /2% + Ra'?(u -e,)
~ S[rf3) "  ar 8T /oryjar + 0*T/82%)
—alrfér =0 (4.5)
RS

150 +

Xe:Ar

0.2 04‘4 0‘,5 0.8 1
Mole Fraction Xenon

F1G. 5. Comparison between theory and experimental data
for the Xe:Ar mixture « infinitely extended horizontal
layer (resuits from refs. [3] and [11] as reported in ref. [2};
--- infinitely extended horizontal layer when Ra® is used ; ——
this work (first-order Galerkin calculation) normalized as in
the preceding figure; ... this work (first-order Galerkin
calculation) normalized as in the preceding figure with the
systematic deviation at vanishing Xe mole fraction; A,
experimental data as reperted in ref. [2].
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F1G. 6. Comparison between various theoretical predictions
and experimental data. The parameter ¥ S(1 + Dgy
rfl + SXt — Dg/r ) was introduced in ref. [11] and its values
have been tabulated in ref. [2]. ~——, infinitely extended
horizontal layer {results from refs. [3] and [11] as reported in

ref. {2]; - - -, infinitely extended horizontal layer when the
Rayleigh number Ra® is used; ——, this work normalized
with the factor 200/247.25; ..., this work corrected for a

systematic deviation at vanishing Xe mole fraction; O, A,
experimental data as reported in ref. [2].

where we have retained I' for the value of the distur-
bance upon the field N, -u = (1, 0, w)accounts for the
velocity.

For axisymmetric convection we take the following
trial functions

u= Ul ariz(z — Dz —0.5), 4.6)
w= Wly(ar)z(z — 1), 4.7)
T = @Jylar)z(z — 1), 4.8)
I =), 4.9
p = Plyor)z 4.10)

where o satisfies the relation Jo{a) = 0.

Again, we consider rigid, impervious and heat
conducting boundaries. The problem has been solved
using the Galerkin method [8, 9]. Sufficient conditions
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for convective instability correspond the following
critical Rayleigh number

Ra® = {(200f%/7*)[(1 — a?/2)/f* — 21][5D(a?/ f*
+ 12)2/f% + 6(a?/f? + 10)(2/f? + 2)]
- 6(02/f2 + 102/ f2 + 2)
— S5Dg(e?/f? + 12)(@?/f* + 10)?/f?}
x [6(a2/f? + 2) + 5S(a*/f* + 10)/rp,
+ 58(a%/f? + 12) — SDpa?/rpf?]7h  (@11)

The results obtained with equation (4.11)are described
in the following section. It suffices here to note that
with vanishing Soret and Dufour coefficients and
infinitely large values of f we obtain a critical Rayleigh
number of 1884.3 and a critical wavenumber of 3.22
which compare rather well with the more accurate
results of 1707 and 3.14 already known in the
literature.
5. AXISYMMETRIC MODE OF CONVECTION:
DISCUSSION OF RESULTS

Table 1 gives the predictions concerning wavenum-
ber, i.e. the number of axisymmetric rolis and critical
Rayleigh number as functions of the aspect-ratio, f =
R/Land Soret separation. The latter parameter plays a
strongly destabilizing effect whereas low values of the
aspect-ratio rather tend to stabilize the layer. For the
sake of completeness we also provide a comparison of
our predictions with some other results known in the
literature, theoretical [ 12] and experimental [13]. The
agreement obtained is valid enough to encourage
further experimental studies of convection in cylinders
of varying aspect-ratio and adequate choice of relevant
boundaries.

Acknowledgements—The authors acknowledge fruitful dis-
cussions with Professor E. L. Koschmieder and Dr. P. L.
Garcia-Ybarra. This research has been sponsored by the
Stiftung Volkswagenwerk.

Table 1. Number of axisymmetric rolls as a function of aspect-ratio, f =
R/L. Large values of f approximate the infinitely extended horizontal
layer. Note that for given aspect-ratio the Soret effect induces a change of

wavenumber.
b
0 0.01 0.1
S/ Ra® Rolls Ra*f Rolls Raf Rolls
1 2975 1 1467 1 263 1
4 1902 3 779 3 120 2
7 1894 6 779 5 119 5

Table 2. Critical Rayleigh number and number of axisymmetrical rolls as a function of aspect-
ratio and vanishing Soret and Dufour effects. The second and third columns account for results
obtained respectively with sections 4 and 2. Column 3 refers to results due to Charlson and Sani
[12]. The last column gives the findings of Koschmieder [13], albeit for insulating lateral walls.

f Ra* Rolls Ra* Rolls Ra* Rolls{12]  Rolls[13]

9.8 1887 10 2213 10 1714.6 10 10
10.3 1884 10 2216 10 17139 10 11
129 1886 13 2215 13 1711.8 13 13
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CONVECTION DE BENARD DANS DES CYLINDRES POUR UN FLUIDE BINAIRE

Résumé—On considére un mélange binaire (gaz ou liquide) dans un cylindre vertical chauffé par le bas. Des

conditions suffisantes sont données pour 'instabilité permanente thermoconvective. On considére des modes

de convection & la fois axi-et-asymétriques. Les prévisions théoriques sont comparées aux données
expérimentales disponsibles.

ZWEIKOMPONENTEN-BENARDKONVEKTION IN ZYLINDERN

Zusammenfassung—Es wird ein nicht reagierendes binires (Gas- oder Fliissigkeits-) Gemischin einem von

unten beheizten vertikalen Zylinder betrachtet. Ausreichende Voraussetzungen fiir stetige thermokonvektive

Instabilitat sind gegeben. Es werden sowohl achsensymmetrische als auch unsymmetrische Formen der

Konvektion betrachtet. Die Aussagen der theoretischen Berechnungen werden mit den vorhandenen
experimentellen Datan verglichen.

JABYXKOMITOHEHTHAS KOHBEKLHWA BEHAPA B LMJIMHIAPAX

AHHOTaImﬂAPaCCManHBaCTCﬂ HEpearupyroluas 6HHapHaﬂ (razoBas WM XUIKOCTHAA) CMeCh B

BEPTHKAJIbHOM Harp€BacMoM CHH3Y UHJIHHAPE. HpHBOﬂﬂTCﬂ YCIOBHSA JOCTATOYHOCTH 15 CTaI.IHOHapHOﬁ

TCpMOKOHBBKTHBHOﬁ HCyCTOfl tHBOCTH. ”CCJ’IC[I)'}OTCSI KaK CHMMMETPHYHBIC, TAK U ACHMMETPHUYHBIE

PEKHMBI KOHBEKIIHH. P€3yﬂbTaTbI TEOPETUYECCKHUX PACUETOB CPABHHUBAKOTCA C HMCIOLIMMUCA IKCNIEPH-
MCHTAJIbHBIMH JAHHBIMH.



