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TWO-COMPONENT BENARD CONVECTION IN CYLINDERS 

E. CRESFQ and M. G. VELARDE* 

U.N.E.D.-Fisica Fundamental, Apdo. Correos 50 487, Madrid, Spain 

(Receiwd 12 April 1982) 

Abstract-A nonreactive binary (gas or liquid) mixture in avertical cylinder heated from below is considered. 
Sufficient conditions are given for steady thermoconvective instability. Both axi- and asymmetric modes of 
convection are considered. The theoretical predictions are compared with the available experimental data. 
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NOMENCLATURE 

mass diffusivity ; 
D”, Onsager’s Dufour cross-coefficient ; 
e,, e,, e,, unit vectors; 
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h, 
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J", 
k, 
L 
n, 
ND 
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p, 

AT. 

u, 
u, 

u, 

u, 

W. 

W, 

Z, 

aspect ratio, R/L; 

aspect ratio, L/2R( = l/28; 
nth order of modified Bessel function; 
nth order of Bessel function ; 
solution of equation (2.7); 
height of cylinder ; 
outward unit normal vector; 
mass fraction of component one; 
dimensionless pressure field ; 
Prandtl number, V/K; 

coefficient in pressure field 
representation ; 
dimensionless radial coordinate; 
Lewis number, D/K; 

Soret number, yAN ,/(aAT); 
dimensionless time; 
dimensionless perturbation in tempera- 
ture field; 
thermal gradient ; 
velocity field ; 
radial component of dimensionless 
velocity ; 
coefficient in radial component ofvelocity 
field representation ; 
azimuthal component of dimensionless 
velocity ; 
vertical component of dimensionless 
velocity ; 
coefficient in radial component ofvelocity 
field representation ; 
dimensional vertical coordinate. 

Greek symbols 

a, thermal coefficient of expansion ; 

Y> volume expansion due to variation of the 
mass fraction N 1 ; 

r, dimensionless perturbation in concen- 
tration field ; 

f, coefficient in concentration field 
representation ; 
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61, 62, see equations (2.15) and (2.16); 

K, thermal diffusivity ; 

Pl, chemical potential of component one ; 

ii, 
kinematic viscosity ; 
defined T - l-‘; 

P> density ; 

y’, defined S(l + D,)/rdl + S)(l - D&J; 

4% azimuthal coordinate. 

Superscripts 

m, 
C, 

average ; 
critical. 

INTRODUCTION 

THE ROLE of Onsager cross-transport phenomena in 
the stability of fluid layers heated from below or above 
has been the subject of intense research in the past 
decade. Recently, interest has focused on the impor- 
tance of heat and mass cross-transport processes in 
cylindrical containers [l, 21. In the present paper we 
develop a general, albeit linear, stability analysis of the 
influence of Soret and Dufour effects upon the stability 
of the motionless steady state with no restriction on the 
preferred pattern for convective instability. We discuss 
the role played by the aspect-ratio of the container and 
delineate the threshold for axi- and asymmetric con- 
vective rolls. The present paper also extends earlier 
work on binary gas mixtures in infinitely extended 
horizontal layers [3]. 

1. LINEAR STABILITY ANALYSIS 

We consider a motionless binary fluid mixture in a 
vertical cylindrical container of height L and diameter 

2R (Fig. 1). When the initially homogeneous layer is 
heated from below the Soret effect distributes the 
components in accordance with the value given to the 
thermal gradient (AT/L, where T denotes tempera- 
ture) until the mass and heat fluxes balance each other 
[4]. On the other hand, past a certain threshold the 
thermal gradient induces enough buoyancy to de- 
stabilize the linearly distributed state of rest thus 
leading to natural convection [5]. 

For convenience in the description we choose the 
following scales : unit length R ; unit time R’/K, where K 
is the thermal diffusivity (thermometric conductivity) 
of the mixture; velocity KL/R’; temperature AT; 
concentration (mass fraction) AN 1 ; pressure p”gL, 
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FIG. 1. A sketch of the container. Note that in the main text 1 

we have used two different aspect-ratios : h = L/2R and/ = 
u, = 4(h2 - z2)2 w(r) cos n$. (2.3) 

R/L. 2R and L denote diameter and height, respectively. e 
denotes a unit vector along a given direction as subscript. Note that we have assumed periodicity along the Cp 

coordinate and that the radial parts satisfy the con- 
tinuity equation. We have 

where pm and g denote a reference density and the 
gravitational acceleration, respectively. We also in- 

u(r) = - [J:(kr) - Jn(k)r”+‘]/kJ,(k), (2.4) 

troduce the following dimensionless groups : aspect- u(r) = [J,(kr)/r - J,(k)r”“]n/k2J,(k), (2.5) 
ratio h = L/2R ; Rayleigh number aa = 
ccgATR4/(vrcL), where u is the thermal expansion 

w(r)= J,(kr)/J,(k) - r” (2.6) 

coefficient and v is the kinematic viscosity; Prandtl where k obeys the relation 
number P = V/K; (inverse) Lewis number rD = D/K, 

where D denotes the mass diffusivity ; Soret separation kJ;(k) = (n + l)J;(k) (2.7) 

or buoyancy factor S = - yAN ,/(crAT), where y is the and the primed symbols denote derivatives with re- 
density variation induced by a change AN, in the spect to the argument. 
mass-fraction of, for example, component one ; Dufour Thus, according to the value given to n we have 
number D, = + TN,D”~,(a~(,IaN,),,~luc~AT, axisymmetric rolls (n = 0), asymmetric rolls (n = 1) 
where D” is Onsager’s Dufour cross-coefficient [4] ; p1 and higher order modes (n > 2). 
is the chemical potential of component one that we As the chosen trial functions for the velocity field are 
take as the denser in the mixture. We also take S an exact solution of the continuity equation we use 
positive when the denser component migrates to the them to generate trial functions for the fields T and R 
colder boundary. The superscript m denotes some [8]. We have 
reference value given to the relevant quantity, say, the 
value at the bottom surface; cp is the specific heat at T = B,(r)(h’ - z2)(5h2 - z’)cos nq5, (2.8) 

constant pressure. !LI = e,(r) cos n$~ cos (~6,) (2.9) 
With the above introduced scales and definitions the 

thermohydrodynamic evolution of disturbances upon 
where 

the motionless state of the fluid layer is given by the 0,(r) = [11/2486:(k2 + d:)][GfJ,(kr)/J,(k) 
following set of partial differential equations [3,6,7] : 

+ k21,(6,r)/1,(6,) - (k2 + S:)r”], (2.10) 
div u = 0 (1.1) 0,(r) = AJ,(kr)/J,(k) + B1,(6,r) + Cr” (2.11) 

P-r au/at = l?a grad p/uRAT + V2u 
with 

+ [I?a(l + S)T + SRaR]e, (1.2) 
A = 12h4/n4(k2 + S;), (2.12) 

dT/dt = (1 + D,)V’T + D,V2a + w (1.3) B = [1/6,~(6,)][12h4/n4d;(k2 + S;)] 
an/at = (rD - D,)VW - (i + D,)vZT (1.4) 

x [n(k’ + S;) - k6; J”(k)/J,(k)], (2.13) 
where u = (u, u, w) accounts for the 3-dim. velocity 
field ; t denotes dimensionless time ; 0 = T - r (for 

C = - 12h4/z46;, (2.14) 

convenience we introduce a dimensionless difference S: = 153/62h2 (2.15) 

between the temperature and mass-fraction fields) and 
e, = (0, 0, + 1). 

We restrict consideration to the following accepted 
realistic boundary conditions (bc.): rigid walls that are 
impervious to matter transfer and good heat con- 
ductors. Wehaveu = 0, T = 0andVR.u = OatZ = 
fh and R = 1, where n denotes the outward unit 
normal vector to the horizontal or vertical boundaries 
of the cylinder. 

2. FORMAL SOLUTION OF THE STABILITY PROBLEM: 
ARBITRARY MODES OF CONVECTION 

The system of equations (l.l)-( 1.4) has been solved 
using the Galerkin method [7,8]. With u now denoting 
the velocity field in cylindrical coordinates (Fig. l), u = 

(u,, u+, u,), we set 

u, = z(h2 - z2)u(r) cos n& (2.1) 

u# = z(h2 - z2)u(r) sin n&, (2.2) 
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and 

6, = n/h. (2.16) 

The functions J, and I, refer to the Bessel and modified 
Bessel functions [lo]. 

Then the critical Rayleigh number for the onset of 
(steady) convection is given by the following equation 

i&c = - (u . V%l)/[(w T)(l - Dr/rn)(l + S)/ 

fl + D,) + (wf2> sire] (2.17) 

where the bracket denotes the following scalar product 

(fs> = SfsdJ (2.18) 

withfand g two arbitrary solutions of the problem and 
the integration goes over the whole cylinder (volume, 

V). 
A general expression for fiat can be given for an 

arbitrary value of n. However, we shall discuss here 
results for the n = 0 (axisymmetric) and n = 1 
(asymmetric) modes. 

We have 

n=O 

(II .V’u) = - (!?/630)[189 + 24h2k2 + 4h4k4] 
(2.19) 

<wT) = [121~9kz/19S30~~(k2 + S;)‘][S’: 

+ S: k2 + 4k2 - 8k21,(6,)/‘6,1,(6,)] (2.20) 

(~52) = [18h9k2/~86$(k2 + a;)] [6’: + k26; 

- 4k2 + 2k2621,(b2)/I,(iS2)]. (2.21) 

n=l 

(u ,V2u) = - (4h5/283Sk4~~2~4k4(k4 + k2 - 20) 

+ 3h2(4k6 - k4 - 112k’ + 64) 

+ 21(4k4 + kZ - 104)], (2.22) 

(~7’) = (121h9/87885)[k2S:(kZ + S;)‘]-’ 

x [72k6 + 26:k2(k4 - 2k2 - 44) 

+ 6;(2k4 - k2 - 64) - 36~,k’~~(~,)/~~(~~~ 

+ 9k%f], (2.23) 

(wiz) = [4h4/z8(k2 + S:)“S:} {S;(2k4 - k2 - 64) 

+ 6;k2(2k4 - 4k* - 88) - 3k46;(k2 + 8) 

+ 4k2(3k2 + 2s; + S;k2) 

+ [(k26; + 6k2 + 262)~,@2)- 3k21,(6,)] 

x E~2m2) - X,(62)1 - ‘f. (2.24) 

3. DISCUSSION OF REHJLTS AND COMPARISON 

WITH EXPERIMENTAL DATA 

The critical Rayleigh number for the onset of 
convective instability, &, is a rather involved function 
of the parameters of the problem, S, D,, rD and h. For 
illustration we aive some of the results found. Figure 2 

Two component Benard convection in cylinders 

1 I h 
h.1 10 

FIG. 2. Critical Rayleigh number for axi- and asymmetric 
modes of convection fn = 0 and n = 1, respectively) as a 
function of asnect-ratio, h. and given values of Soret and 
Lewisnumbers(S = 10m4,r, = l&*).Note thecross-over of 
the two modes at h = h* = 0.74. Different values of S and rD 

do not alter the qualitative picture. 

provides the critical Rayleigh number as a function of 
the aspect-ratio. It appears that at a certain value of h, 
called h*, around 0.7, there is a cross-over between the 
axi- and asymmetric modes of convection as already 
happens with single-component liquid layers [S]. Past 
h* the taller the cylinder the greater is the tendency 
towards asymmetric cells. 

Figure 3 illustrates the rather minor role played by 
the Dufour effect as already noted in the stability 
analysis of infinitely extended horizontal layers 131. 

Figures 4 and 5 provide a comparison between 
theory and experiment. This corresponds to the mix- 
tures Xe : He and Xe : Ar, respectively. For the sake of 
completeness we report the values of the first-order 
Galerkin calculation using two normalization factors, 
one corresponds to a mere displacement of the curve to 
fit the experimental data at vanishing molar fraction of 
Xe and the other to a weighted correction factor of 200 
(the experimental value) over 247.25 (our theoretical 
result). The former fit provides quite a satisfactory 
description of the experimentally available data [2]. 

Figure 6 also compares theory with experiment 
using the parameter Y = S(1 + Dr)/r*(l + S) 
(1 - Dr/r& introduced in ref. [l 11. The peaks shown 
in this curve follow the variation of UT with the mass- 
fraction of Xe as reported in ref. [2] thus illustrating a 
difficulty with the use of such an involved combination 
of parameters. There are no peaks in a plot of critical 
Rayleigh numbers vs Soret separation, S. Moreover, 
the curve for infinitely extended layers lies well below 
the corresponding curve for a bounded cylinder which 
indicates the expected stabilizing effect of the lateral I__ 
boundaries IS]. 
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f i 

FIG. 3. An illustration of the role of Dufour effect on the stability analysis. Note that at vanishing Soret 
coefficient all curves must cross thevertical axis at the critical Rayleigh number for the onset of convection in 
single-component layers. Different values of the aspect-ratio (here h = 0.5) do not alter the qualitative 
picture. Solid and broken lines respectively correspond to vanishing and non-vanishing Dufour coefficient. 

4. ALTERNATWE DESCRIPTION OF THE PROBLEM : 
THE CASE OF AXYSYMMETRIC CONVECTION 

When restriction to axisymmetric modes of con- 
vection is made a more suitable set of scales is the 
following: vertical length L ; horizontal length R ; 
pressure pmvtcRal ;’ ; velocity KRu’.~/L where now the 
Rayleigh number is Ra = ~gL3ATf~v and the aspect 
ratiof = R/L. All other scales are the same as defined 
earlier in section 2. Then the thermohydrodynamic 
evolution of distur antes upon the initially motionless 

B steady state is g erned by the following set of 
equations : 

f-'iWar + (rf)-54 + e, f3(u .e,)/dz = 0, (4.1) 

Xe:He 

, , , ( , , , - ^_ 
J 

02 04 06 “t( 

Mole Fraction Xenon 

FIG. 4. Comparison between theory and experimental data 
for the Xe:He mixture - infinitely extended horizontal 
layer (results from refs. f33 and [ll] as reported in ref. [2]. 
The latter authors in fact plot the quantity (2~/1707) (R&j 
rD Y); --- infinitely extended horizontal layer (results fron 
ref. [3] and [11] when the critical Rayleigh number k&z’ is 
used); - this work (first-order Galerkin calculation) 
normalized with the factor 200/247.25 (experimental vs 
theoretical values at vanishing Xe mole fraction); this 
work (first-order Galerkin calculation) corrected with the 
systematic deviation between theory and experiment at 
vanishing Xe mole fraction ; A, experimental data as reported 

in ref. [Z]. 

fm ’ i?p/& -f -2 a[( I/r)S(ru)J/Sr - d2uji?z2 

+ P-’ <%/at = 0, (4.2) 

iip/?z - Ra’!’ T - (rf2)-’ i?[r d(u .e,)/&]/& 

- S2(u .e,)/dz’ - SRCI”~ r + P-’ (7(u se,)/& 

= 0, (4.3) 

(rf’)- ’ ~(r~T~~r)/~r + ii2T/8z2 + Ru”~(u * e,) 

+ DF[(rf2)- ’ c”(rX/dr)/& + Cf2r/dz2J 

- iiTfdt = 0 (4.4) 

(r&f2) ?(r Z’/ar)/& + r$?2r/dz2 + Ru’~~(u . e,) 

- S[(rf’)- ’ i?(r ?T/dr)/Sr + a2T/Zz2] 

- i?f/& = 0 (4.5) 

Xe:Ar 

t 

02 04 0.5 0’8 I 

Mole Fraction Xenon 

FIG. 5. Comparison between theory and experimental data 
for the Xe:Ar mixture - infinitely extended horizontal 
layer (results from refs. [3] and [11] as reported in ref. [2]; 
___ infinitely extended horizontal layer when l&r’ is used ; ~ 
this work (first-order Galerkin calculation) normalized as in 
the preceding figure; this work (first-order Galerkin 
calculation) normalized as in the preceding figure with the 
systematic deviation at vanishing Xe mole fraction; A, 

experimental data as reported in ref. [2]. 
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0 as 1 

FIG. 6. Comparison between various theoretical predictions 
and experimental data. The parameter Y = S(l + I&)/ 
rdl + S)(l - B&n) was introduced in ref. [ll] and its values 
have been tabulated in ref. [2]. --, infinitely extended 
horizontal layer (results from refs. [3] and [ll] as reported in 
ref. {2]; - - -, infinitely extended horizontal layer when the 
Rayleigh number l&P is used; --, this work normalized 
with the factor 2001247.25; . ., this work corrected for a 
systematic deviation at vanishing Xe mole fraction; 0, 5, 

experimental data as reported in ref. [2]. 

where we have retained I for the value of the distur- 
bance upon the field N i . u = (u, 0, w) accounts for the 
velocity. 

For axisymmetric convection we take the following 
trial functions 

u = UJ,(ffr)z(z - 1,fz - OS), (4.6) 

w = WJ,(ar)z(z - l), (4.7) 

T = W,(ar)z(z - I), (4.8) 

I = fJi,(ar), (4.9) 

p = PJ,(ar)z (4.10) 

where a satisfies the relation Jo(a) = 0. 

Again, we consider rigid, impervious and heat 
conducting boundaries. The problem has been solved 
using the Galerkin method [8,9]. Sufficient conditions 

for convective instability correspond the following 
critical Rayleigh number 

Ra’ = ~(2~~‘/7a’)[(l - az/2)/~z - 21][5D,(a2/f2 

+ 12)azf2 +’ 6(a2/_f2 + 10)(a2/S2 + Z)] 

- 6(a2/j2 + 10)‘(a2/f2 + 2) 

- 5D,(a2/fZ + 12)(a2/f2 + 10)a2/f2} 

x [6(a2/f2 + 2) + 5S(a2/f2 + 10)/r, 

+ SS(a2/f2 + 12) - 5D,a2/rJ2]-‘. (4.11) 

The results obtained with equation (4.11) are described 
in the following section. It suffices here to note that 
with vanishing Soret and Dufour coefficients and 
infiniteiy large values offwe obtain a critical Rayleigh 
number of 1884.3 and a critical wavenumber of 3.22 
which compare rather well with the more accurate 
results of 1707 and 3.14 already known in the 
literature. 

5. AXISYMMETRIC MODE OF CONVECTION : 
DlSCUSStON OF RESULTS 

Table 1 gives the predictions concerning wavenum- 
her, i.e. the number of axisymmetric rolls and critical 
Rayleigh number as functions of the aspect-ratio,f = 
R/L and Soret separation. The latter parameter plays a 
strongly destabilizing effect whereas low values of the 
aspect-ratio rather tend to stabilize the layer. For the 
sake of completeness we also provide a comparison of 
our predictions with some other results known in the 
literature, theoretical [ 121 and experimental [ 131. The 
agreement obtained is valid enough to encourage 
further experimental studies of convection in cylinders 
ofvarying aspect-ratio and adequate choice of relevant 
boundaries. 
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Table 1. Number of axisymmetric rolls as a function of aspect-ratio,f = 
R/t. Large values off approximate the infinitely extended horizontal 
layer. Note that for given aspect-ratio the Soret effect induces a change of 

wavenumber. 

S 
0 0.01 0.1 

f Ra’ Rolls RaC Rolls Rae Rolls 

1 2975 1 1467 1 263 1 
4 1902 3 719 3 120 2 
7 1894 6 719 5 119 5 

Table 2. Critical Rayleigh number and number of axisymmetrical rolls as a function of aspect- 
ratio and vanishing Soret and Dufour effects. The second and third columns account for results 
obtained respectively with sections 4 and 2. Column 3 refers to results due to Charlson and Sani 
[12]. The last column gives the findings of Koschmieder 1131, albeit for insulating lateral walls. 

f Ra” Rolls Ra’ Rolls Ra” Rolls[l2] Rolls[l3] 

9.8 1887 10 2213 10 1714.6 10 10 
10.3 1884 10 2216 10 1713.9 10 11 
12.9 1886 13 2215 13 1711.8 13 13 
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CONVECTION DE BENARD DANS DES CYLINDRES POUR UN FLUIDE BINAIRE 

Rhm-On considdre un m&nge binaire (gaz ou liquide) dans un cylindre vertical chauffi par le bas. Des 
conditions suffisantes sont donn&s pour I’instabilitt permanente thermoconvective. On considere des modes 
de convection g la fois axi-et-asymktriques. Les prhisions theoriques sont comparbs aux donnees 

exp&imentales disponsibles. 

ZWEIKOMPONENTEN-BI?NARDKONVEKTION IN ZYLINDERN 

Zusammenfassung-Es wird ein nicht reagierendes binlres (Gas- oder Fliissigkeits-) Gemischin einem von 
unten beheizten vertikalen Zylinder betrachtet. Ausreichende Voraussetzungen fiir stetige thermokonvektive 
Instabilitlt sind gegeben. Es werden sowohl achsensymmetrische als such unsymmetrische Formen der 
Konvektion betrachtet. Die Aussagen der theoretischen Berechnungen werden mit den vorhandenen 

experimentellen Datan verglichen. 

flBYXKOMnOHEHTHAR KOHBEKUMR 6EHAPA B IJMJIMHflPAX 

AHliOTalalfl-PaCCMaTpHBaeTca Hepearilpytoluas Gs~ap~as (ra3OBas MJlM ~KM~KOCTH~R) CMeCb ” 
BepTHxanbHoM HarpeaaeMoM cHH3y usnasnpe. fIpHa0na~cfl ycnoslin AocTaTo~HocTH aqs MauuoHapHofi 
TepMOKOHBeKTHBHOfi HeyCTOii rHBOCTII. MCCnenymTCa KaK CHMMeTpHqHbIe. TaK H aCH.MMeTpHqHbIe 
pexKAMb1 KOHBeKuAR. Pe3ynbTaTbl TeOpeTMqeCKHX paCqeTOB CpaB”MBamTCa C MMemUIAMACII ?KC”epM- 

MeHTa”bHbIMM naHHb,MM. 


